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a  b  s  t  r  a  c  t

Similarity  assessment  of  complex  chromatographic  profiles  of  herbal  medicinal  products  is important  as  a
potential  tool  for their  identification.  Mathematical  similarity  parameters  have the  advantage  to be  more
reliable  than  visual  similarity  evaluations  of often  subtle  differences  between  the  fingerprint  profiles.
In  this  paper,  different  similarity  analysis  (SA)  parameters  are  applied  on green-tea  chromatographic
fingerprint  profiles  in  order to test  their  ability  to identify  (dis)similar  tea  samples.  These  parameters  are
either based  on correlation  or  distance  measurements.  They  are  visualised  in  colour  maps  and  evaluation
plots. Correlation  (r) and  congruence  (c) coefficients  are  shown  to provide  the  same  information  about
the similarity  of  samples.  The  standardised  Euclidean  distance  (ds)  reveals  less  information  than  the
Euclidean  distance  (de),  while  Mahalanobis  distances  (dm)  are unsuitable  for  the  similarity  assessment
of  chromatographic  fingerprints.  The  adapted  similarity  score  (ss*) combines  the  advantages  of  r (or  c)
and de.  Similarity  analysis  based  on  correlation  is  useful  if concentration  differences  between  samples  are
not  important,  whereas  SA  based  on  distances  also  detects  concentration  differences  well.  The evaluation
plots including  statistical  confidence  limits  for the  plotted  parameter  are  found  suitable  for  the  evaluation
of new  suspected  samples  during  quality  assurance.  The  ss*  colour  maps  and  evaluation  plots  are  found

to be  the  best  tools  (in comparison  to the other  studied  parameters)  for the  distinction  between  deviating
and  genuine  fingerprints.  For  all studied  data  sets  it is confirmed  that  adequate  data  pre-treatment,  such
as aligning  the chromatograms,  prior  to  the  similarity  assessment,  is  essential.  Furthermore,  green-tea
samples  chromatographed  on  two dissimilar  High-Performance  Liquid  Chromatography  (HPLC)  columns
provided  the  same  similarity  assessment.  Combining  these  complementary  fingerprints  did  not  improve
the  similarity  analysis  of  the  studied  data  set.
. Introduction

In herbal samples, the variability of active compounds and their
oncentrations is well known. They vary with the species and
ith factors such as the cultivating region, the climate (temper-

ture, humidity, light, wind) and the harvest time. Differences are

lso caused by the method of drying, washing, crushing and pul-
erising plants, as well as storage and conservation [1,2]. Proper
dentification and quality control is required in the crusade against
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the commercialisation of low-quality ‘lookalikes’, containing lower
concentrations of active compounds or higher concentrations of
contaminants (like pesticides) [3,4]. (Un)conscious fraud might also
be caused by language confusions or by a lower harvest quality due
to climate conditions [4–6]. Therefore, identification, as part of the
quality control of herbal medicines or nutraceuticals, is essential
for the user’s safety.

Regulatory instances provide monographs and guidelines to
ensure the quality of medicines. In monographs of, for instance,
The European Pharmacopoeia [7],  The United States Pharmacopeia
[8] and The Pharmacopoeia of the People’s Republic of China [9],
besides macroscopic and microscopic identification, markers are
often specified for the identification and quality control of bulk

herbal material. Because of the highly complex and unknown com-
position of herbs and the lack of unique markers, this approach is
not always appropriate for the identification and global quality con-
trol of a herb [10,11]. Identification based on a limited number of

dx.doi.org/10.1016/j.jchromb.2012.04.031
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
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arkers is thus not always sufficient and could be replaced by the
nformation originating from the entire fingerprint, i.e. a charac-
eristic profile of the herb [12,13]. Fingerprints can be obtained by
pectroscopic or separation (mainly chromatographic) techniques
10,14–19]. Regulatory agencies, such as the European Medicines
gency (EMA) [20], the American Food and Drug Administra-

ion (FDA) [21], the Chinese State Food and Drug Administration
22], the World Health Organisation (WHO) [23] and the above-

entioned Pharmacopeia commissions accept in monographs the
se of fingerprints, besides macro- and microscopic identification.
n overview of existing regulations and guidelines about the qual-

ty control of herbal medicines is presented in Ref. [24].
A proper identification should confirm that a sample is origi-

ating from the expected herb and exclude that it is from another.
he fingerprint of a sample is commonly compared with that of a
eference standard extract. Since chromatographic fingerprints of
omplex samples, like herbal extracts, may  contain large numbers
f low concentrated compounds, a visual evaluation cannot always
iscriminate between the profiles [25,26]. Therefore mathematical
ata handling techniques are recommended.

To evaluate (dis)similarities, two types of mathematical data
andling approaches can be used, i.e. ‘similarity analysis’ and

exploratory data analysis’. Exploratory data analysis techniques
isualise trends within large groups of samples, characterised by
any variables. New samples are positioned relative to the above-
entioned groups of samples. Principal Component Analysis (PCA)

r Hierarchical Clustering Analysis (HCA) is frequently used tech-
ique [1,14,18,27–33]. An overview of these and other techniques,

llustrated with examples, can be found in Ref. [10].
The second approach, i.e. similarity analysis, compares the sam-

les two-by-two. SA parameters, e.g. correlation coefficients (r),
re also widely used to evaluate (dis)similarities between herbal
ngerprints [2,27–31,34–40].  Correlation coefficients evaluation of
PLC fingerprints has been used to distinguish between substitutes
nd adulterants [36]. Inter- and intra-manufacturer batch-to-batch
onsistency may  be another objective of SA [34,35]. SA is occasion-
lly based on a number of selected peaks [27,41].  In our opinion,
A in quality control is more informative when the entire profile is
sed, as dissimilarities in the non-selected peaks can be important
s well.

Besides correlations, also measures of distance can be used
or SA. However, distance calculations, e.g. Euclidean and Maha-
anobis distances, are mostly performed in combination with an
xploratory data analysis [27,33,42,43].  The choice for either a cor-
elation or a distance parameter requires a consideration of the
bjective goal [44,45] and is a part of our study. In the literature
10], it is noticed that the choice of a good reference chromatogram
s critical to obtain representative similarity values for the samples
o be evaluated. Similarities are occasionally determined after com-
arison with a genuine sample, identified as that with the highest
imilarity to all others [2].  Often the mean or median fingerprint
f the samples is taken as the reference when standard extracts of
he herb are unavailable [27–31,46].  According to [47], the mean
ngerprint should be used if no outlying fingerprints are present,
therwise the median can act as reference. Similarity values for
amples are preferably to be determined relative to a group of gen-
ine fingerprints. Comparison with a range of similarity values from

 number of genuine samples is therefore also used, for instance, in
ef. [34]. This approach was also applied in this study.

The main goal of this paper is to compare different correlation
nd distance measures to evaluate their suitability for similarity
nalysis of chromatographic fingerprint profiles as a tool for iden-

ification and quality control of herbal samples. Three data sets of
reen-tea fingerprints are used as case studies. A second goal of
his paper is to evaluate the usefulness of dissimilar chromato-
raphic fingerprints, i.e. chromatograms obtained on dissimilar
r. B 910 (2012) 61– 70

chromatographic systems. It is investigated whether or not the
combination of such fingerprints reveals more information about
the (dis)similarities between samples.

2. Theory

Correlation and distance measures can be used for similarity
analysis of herbal chromatographic fingerprints.

2.1. Similarity analysis based on correlation

The correlation parameters used in the literature can be reduced
to the (Pearson product-moment) correlation coefficient r and the
congruence coefficient c (Eqs. (1)–(3)).  Both r and c are calculated
between each pair of fingerprints, xi, with i = 1, 2, . . .,  p, and where
each fingerprint is composed of measurements at j = 1, 2, . . .,  q time
points.

r(x1, x2) = cov(x1x2)
sx1sx2

=

q∑
j=1

(x1j − x̄1)(x2j − x̄2)

√√√√
q∑

j=1

(x1j − x̄1)2
q∑

j=1

(x2j − x̄2)2

= (x1 − x̄1)(x2 − x̄2)
||x1 − x̄1||||x2 − x̄2|| (1)

c(x1, x2) =

q∑
j=1

x1jx2j

√√√√
q∑

j=1

x2
1j

q∑
j=1

x2
2j

= (x1)(x2)
||x1||||x2|| (2)

with x1 and x2 the fingerprints considered, x1j and x2j the
absorbances measured at the jth time point, x̄1 and x̄2 the respective
means of the absorbances, cov the covariance of the fingerprints,
sxi the standard deviation, and ||xi|| the norm of the fingerprint, i.e.
the length of the corresponding vector xi, given by:

norm = ||xi|| =

√√√√
q∑

j=1

x2
ij

(3)

To evaluate whether chromatographic fingerprints are similar
or not, the correlation coefficient r (Eq. (1)) is most frequently
used [48]. Correlation coefficient calculations are used in a vari-
ety of applications [2,27–31,34–39].  As the correlation coefficient
between two  fingerprints is by definition equal to the scalar prod-
uct of the normed mean-centred fingerprints, it is the ratio of the
covariance of two fingerprints to the product of their standard
deviations [49]. The more r is approaching 1, the more linear the
relation between both fingerprints is and the more similar they are.
This parameter r is integrated in the ‘Similarity evaluation system
for chromatographic fingerprints of Traditional Chinese Medicines
(Chinese Pharmacopoeia Committee, 2004)’ software [50]. Liang’s
group [38] developed a software package, Computer Aided Similar-
ity Evaluation (CASE), for processing fingerprint data, in which the
correlation coefficient is called linear correlation coefficient (LCC).

The congruence coefficient c (Eq. (2)) [51] is a correlation cal-
culated with respect to the origin (as opposed to the correlation

coefficient, which is calculated with respect to the mean). The con-
gruence coefficient is also called the reflective correlation or the
angular separation [45]. In the CASE software [38], this parameter
is named the ‘Similarity Index’ and is expressed as the cosine of the
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ngle between the fingerprints as such, i.e. not the mean-centred
ngerprints as in r. Most often r is used, but depending on the
bjective, c can sometimes better explain the correlation between
amples [45,52]. Therefore, it is interesting to check whether this
s also the case in the similarity analysis of green-tea fingerprints.

.2. Similarity analysis based on distance

Distance measurements between two fingerprints are another
pproach in similarity analysis. The larger the distance between
wo fingerprints, the more dissimilar they are.

When comparing with a reference extract, a large distance
mplies that the quality of the studied extract may  be unaccept-
ble [53]. If the difference between the fingerprints is acceptable,
he sample can be accepted as having the same nutritional or phar-

aceutical properties as the reference.
The distance between two fingerprints can be calculated in dif-

erent ways. Most commonly used is the Euclidean distance de (Eq.
4)). In other cases, the standardised Euclidean distance ds (Eq. (5))
an be used. Another distance measure is the Mahalanobis distance
m (Eq. (6))  [44] which takes into account a covariance matrix C, i.e.
he measure of the degree to which both variables are correlated.
herefore, it corrects for their correlation [54]. If no correlation
xists between two variables, i.e. if C−1 equals the unit matrix I, the
ahalanobis distance equals the Euclidean distance. An important

estriction is that C has to be regular to calculate C−1.

e(x1, x2) =

√√√√
q∑

j=1

(x1j − x2j)
2 =

√
(x1 − x2)T (x1 − x2) (4)

s(x1, x2) =

√√√√
q∑

j=1

[(x1j − x2j)/sj]
2 with sj =

√√√√1
p

p∑
i=1

(xij − x̄j)
2(5

m(x1, x2) =
√

(x1 − x2)T C−1(x1 − x2) (6)

ith x̄j the mean and sj the standard deviation of the values in the
th time point, and C the covariance matrix. The other symbols are
xplained higher.

Most distance measures are less obvious to evaluate than cor-
elations because their numerical values can take different orders
f magnitude. To determine whether a distance is small or large, it
ould be easier to use values between 0 and 1, as for correlation

oefficients, representing large and small differences, respectively.
he similarity score ss, given in Eq. (7) [55], is such an adaptation of

 distance measure obtained by dividing the Euclidian distance by
he sum of all absorbance values of fingerprint x1 and by subtract-
ng that ratio from 1. The ss is close to 1 if the fingerprints, and thus
he samples, are similar. This ss is not influenced by the scale of the
bsorbance values. Nevertheless, in the similarity score, the value of
he comparison of fingerprint 1 with fingerprint 2 will be different
rom that of the comparison of fingerprint 2 with 1. We  therefore
ropose a small adaptation by dividing the Euclidean distance by
he maximum of the sums of the absorbances of fingerprints x1 and
2. This adapted similarity score, given in Eq. (8),  is represented by
s*.

√√√√
q∑

j=1

(x1j − x2j)
2

s(x1, x2) = 1 −
q∑

j=1

x1j

(7)
r. B 910 (2012) 61– 70 63

ss ∗ (x1, x2) = 1 −

√√√√
q∑

j=1

(x1j − x2j)
2

max

⎛
⎝

q∑
j=1

x1j,

q∑
j=1

x2j

⎞
⎠

(8)

3. Data sets

The evaluation of similarity analysis parameters is performed on
three data sets consisting of HPLC fingerprints of green-tea extracts
[43,56]. These fingerprints were used to model the anti-oxidant
capacity of the samples. The green-tea samples chromatographed
in both studies were different.

One data matrix consists of the chromatographic fingerprints
of p herbal samples. The rows represent the p samples and the
columns the time points at which absorbances were measured.
A value xij in the matrix represents the absorbance (mAU) in the
ith sample (extract) at the jth time data point (Ultra-Violet (UV)
detection was  performed).

In the study of van Nederkassel et al. [43] the green-tea sam-
ples were chromatographed on a Chromolith SpeedROD column
coupled to a Chromolith Performance column (total column length
150 mm)  resulting in a chromatographic profile of 11 min. The
data set consists of 55 fingerprints, gathered in data matrix Xt
(55 × 3100). In Ref. [43], the first 52 fingerprints were marked as
genuine green-tea samples, and fingerprints 53, 54 and 55 as out-
liers.

In the study of Dumarey et al. [56] two  dissimilar columns were
used, a Chromolith Performance and a Waters Xterra column, both
of 100 mm length. The fingerprints of 63 green-tea samples were
gathered in the data sets Xa (63 × 2701) and Xb (63 × 2952), respec-
tively. In Ref. [56], the first 60 fingerprints were marked as genuine
green-tea samples and fingerprints 61, 62 and 63 as outliers.

In both studies, each green-tea sample was chromatographed
twice. The chromatograms were first aligned using Correlation
Optimised Warping [57] to correct for retention time shifts. Then,
for each sample the average chromatogram was  calculated and
included in the data sets Xt,  Xa and Xb.  The fingerprints of the
three data sets are plotted in Fig. 1.

To test the effect of the alignment of chromatographic finger-
prints on the similarity analysis, results from the original data sets,
e.g. XOa (126 × 2701), were compared with those on the aligned
(also called warped) data sets, e.g. XWa  (126 × 2701). Notice that
the latter matrices contain 126 fingerprints, the double of Xa,  where
duplicated fingerprints were averaged. However, averaging can
only be done meaningfully if the fingerprints are well aligned.

To investigate the usefulness of dissimilar fingerprints for iden-
tification and quality control, data set Xab (63 × 5653) was created
by concatenating for each sample the fingerprint of Xa by those of
Xb.

All calculations and figures are made in Matlab 7.1 (The Math-
works, Natick, MA)  on a computer with an Intel® CoreTM i5-2400
CPU clocked at 3.10 GHz, and with 8.00 GB of RAM.

4. Results and discussion

To evaluate which similarity analyses are best to identify
genuine and false (outlying) green-tea samples, those based on
correlations (r and c) are evaluated in a first section. SA based on

distance parameters (de,  ds,  dm and ss*) is discussed in Section 4.2.
A comparison with the correlation parameters is also made. In a
preliminary study, the influence of aligning the fingerprints on the
SA results was  checked. Although it would be much simpler and
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Fig. 1. Fingerprints of the green-tea samples from data sets (a) Xt,  (b

ess time consuming if no alignment was necessary for SA on chro-
atographic fingerprints, it turned out to be an absolutely essential

tep. An example is provided in Section 4.3.
Finally, the usefulness of the combination of dissimilar chro-

atographic fingerprints in SA is evaluated in Section 4.4.
.1. Similarity analysis based on correlation

The correlation parameters are calculated pairwise between the
 fingerprints in data sets Xt,  Xa and Xb.  The correlation (r) and
time (min)

nd (c) Xb.  The suspected fingerprints are plotted above the regular.

congruence (c) coefficients (Eqs. (1) and (2)) of the data sets Xt and
Xa form p × p correlation matrices [49] and are plotted in the colour
maps of Fig. 2a and b, respectively. For both parameters, the higher
the correlation is (dark red), the more similar the fingerprints and
thus the green-tea samples are. The correlation (Fig. 2a1 and b1)
and congruence (Fig. 2a2 and b2) coefficients-based colour maps are

comparable for a given data set. Visually distinguishable samples,
show low r and c values (blue) versus the majority of the fingerprints
(red), i.e. versus the genuine samples. This is, for example, clearly
the case for samples 53 and 54 in Fig. 2a, and 61 and 63 in Fig. 2b.
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Fig. 2. (a and b) Colour maps of the correlation coefficients r (a1,  b1) and congruence coefficients c (a2, b2) of data sets Xt (a) and Xa (b). (c and d) Evaluation plots for the
c d finge
a LWL a
g egend

d
c
u
‘
d
w

orrelation coefficients (c1, d1) and congruence coefficients (c2, d2) of the suspecte
nd  63 (magenta) from Xa (d). Horizontal lines: lower warning and control limits (
reen-tea fingerprints. (For interpretation of the references to colour in this figure l

To evaluate suspected samples and to distinguish between
eviating and genuine ones, so-called ‘evaluation plots’ were also
reated. In dataset Xt,  the first 52 fingerprints were defined as gen-

ine samples and for data sets Xa and Xb the first 60 were. The

evaluation plots’ of the suspected samples, i.e. 53, 54 and 55 for
ata set Xt,  and 61, 62 and 63 for Xa,  show their correlation values
ith the genuine samples in Fig. 2c and d, respectively. For these
rprints 53 (green), 54 (red) and 55 (magenta) from Xt (c), and 61 (green), 62 (red)
nd LCL) for the correlation and congruence coefficients, derived from the genuine
, the reader is referred to the web version of the article.)

evaluation plots, a reference range of similarity values is deter-
mined from the genuine samples. Representative critical values are
important. In this study, the reference range of similarity values

is determined from the genuine samples as the statistical confi-
dence limits used in quality control charts [49,58]. In a normal
distribution, 95% of, for instance, the correlation coefficients of
genuine samples is situated in the interval r̄  ± 1.96sr , with r̄  the
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verage correlation coefficient and sr the standard deviation of the
-values. In control charts, these limits are called ‘warning lim-
ts’, or more specifically the lower warning limit (LWL), r̄ − 1.96sr

nd upper warning limit (UWL), r̄ + 1.96sr . Thus 97.5% of the cor-
elation or congruence coefficients between genuine samples lay
bove the lower warning limit (LWL), i.e. r̄ − 1.96sr or c̄ − 1.96sc ,
espectively. Stricter limits are the ‘control limits’. 99.7% of the cor-
elation coefficients between genuine samples is situated between
he ‘control limits’ (r̄ ± 3.09sr). Above the lower control limit (LCL),
.e. r̄ − 3.09sr or c̄  − 3.09sc , lays 99.85% of the regular correlation or
ongruence coefficient values, respectively. The LWL  and LCL values
re indicated on the evaluation plots.

Notice that for a given data set the evaluation plots based on
he correlation (Fig. 2c1 and d1) and congruence (Fig. 2c2 and d2)
oefficients also show comparable results. The interpretation of the
imilarity values of the suspected samples is made as follows: a
uspected sample is considered not genuine if more than 2.5% (two
f the 52 and 60 results for Xt and Xa,  respectively), of, for instance,
ts correlation coefficients with the genuine samples is below the
WL  and if more than 0.15% (one correlation value of the suspected
ample) is below the LCL.

The proposed evaluation plots with statistical confidence lim-
ts for suspected samples could be useful during quality control.
uring the development of a reference data set (preferably more

han 20 samples used for quality control charts [49]) to determine
he statistical warning and control limits for these evaluation plots,
he presence of suspected samples is often not known in advance.
his may  affect the limits on the evaluation plots. However, sus-
ected samples may  be indicated from these evaluation plots and
he colour maps visually reveal a global idea of similarities between
ll fingerprints in the data set. In this study, both colour maps and
valuation plots are therefore used to evaluate whether the applied
imilarity parameters are able to distinguish between deviating and
enuine samples.

On the correlation- and congruence-based colour maps of data
et Xt (Fig. 2a) the most dissimilar fingerprint is 54. This is also clear
n the evaluation plots (Fig. 2c). All correlation values of fingerprint
4 are below the LCL. This fingerprint has indeed a clearly differ-
nt pattern, i.e. an extra peak around 6 min  and no peak around

 min  (Fig. 1a). In [43] only this fingerprint was considered as out-
ier based on robust PCA. Fingerprints 53 and 55 on the other hand,

ere excluded from the data set based on deviating Trolox Equiva-
ent Antioxidant Capacity (TEAC)-values. Sample 53 was  considered
n outlier because of a very high TEAC-value [56]. This sample also
hows a slightly different pattern versus the majority of fingerprints
Fig. 1a), resulting in lower r and c values (Fig. 2a). Indeed, on the
valuation plots in Fig. 2c, considerably more than 0.15% or 2.5% of
he values is found below the LCL and LWL, respectively. Fingerprint
5 on the other hand, visually seems similar to the genuine finger-
rints in the colour maps. It was considered as outlier because of
xperimental errors during the TEAC-assay, not based on its finger-
rint profile. The SA (Fig. 2) confirms that fingerprint 55 should not
e excluded as outlier and can be identified as a genuine green-tea
ample.

Fig. 2b and d shows the colour maps and evaluation plots for data
et Xa.  Fingerprints 61 and 63 clearly have a low correlation with
he other samples (Fig. 2b). The evaluation plots shown in Fig. 2d
onfirm the observations about these suspected fingerprints, i.e.
hey are clearly rejected as all their correlation values are below
he LCL. In Ref. [56], these fingerprints were considered as outliers
ased on a visual evaluation of their profile and low TEAC-values.
ingerprint 62, also excluded in Ref. [56], is not clearly rejected

ased on the colour maps (Fig. 2b). However, from the evaluation
lots, it is detected as an outlying sample. The fingerprint profile
ardly shows any peak (Fig. 1b and c) and is thus logically rejected
ecause it can be considered as a sample of bad quality.
r. B 910 (2012) 61– 70

We  can conclude that both the correlation and congruence
coefficients provide similar information and are valuable simi-
larity analysis parameters. The colour maps and evaluation plots
overcome the need for selection of a reference fingerprint. They
allow evaluating the similarity of a fingerprint versus a set of
reference (genuine) fingerprints. On the evaluation plots, all non-
genuine samples were successfully detected, including the low
quality sample 62 of dataset Xa.  Sample 55 of dataset Xt was
correctly detected as a genuine sample. The correlation-based eval-
uation plots with the statistical warning and control limits are thus
efficient for the distinction between genuine and deviating sam-
ples.

4.2. Similarity analysis based on distance

Similarity analysis can also be performed by estimating distance
parameters. The usefulness of these parameters in distinguishing
between deviating samples and genuine ones, is studied in this
section.

First the Euclidean (de)  and standardised Euclidean (ds)  dis-
tances (Eqs. (4) and (5))  are evaluated. The de and ds distances
between each pair of fingerprints are calculated and form p × p
distance matrices. In Fig. 3a and b the Euclidean (a1, b1) and stan-
dardised Euclidean (a2, b2) distance matrices are plotted for the
fingerprints of data sets Xt and Xa,  respectively. For de and ds,  the
blue colour represents low distance values, corresponding to high
similarities, while the red colour represents low similarity. Gener-
ally, the colour maps of de (Fig. 3a1 and b1) and ds (Fig. 3a2 and
b2) show different patterns for the two  data sets. Notice that the
values of ds are lower than de,  as they are divided by their standard
deviation (Eq. (5)).

The evaluation plots of the suspected samples 53, 54 and 55 for
data set Xt (Fig. 3c) and 61, 62 and 63 for Xa (Fig. 3d) are con-
structed as described higher. The UWL  is defined as mean distance
+1.96sd and the upper control limit (UCL) as mean distance +3.09sd.
A suspected sample is identified as not genuine in a given data set
if more than 2.5% of its distance values with the genuine samples
are above the UWL  or more than 0.15% are above the UCL. For both
data sets, the evaluation plots of de (Fig. 3c1 and d1) and ds (Fig. 3c2
and d2) show again different patterns.

In the de colour map, fingerprint 54 from data set Xt (Fig. 3a1), is
detected as deviating (plotted in red). This was  also the case using
the correlation measures. Fingerprint 53 is somehow suspicious in
the de colour map. However, this was  more obvious in the colour
map  of the correlations (Fig. 2a). Notice that some of the genuine
fingerprints also show a lower similarity, which makes the inter-
pretation of the de colour map  in general less obvious than that of
the correlations. In the ds colour map  (Fig. 3a2), many genuine sam-
ples show low similarities, which renders these colour maps less
useful for similarity analysis. In the de evaluation plots (Fig. 3c1),
fingerprints 53 and 54 in data set Xt are detected as deviating sam-
ples. However, as for the ds colour maps, the ds evaluation plots
(Fig. 3c2) give less obvious results. Just 2.5% of the ds results of fin-
gerprint 53 are above the UWL, but none above the UCL. Fingerprint
55 is correctly not detected as deviating profile in both the colour
maps (Fig. 3a) and evaluation plots (Fig. 3c).

From the de colour map  (Fig. 3b1) one concludes for data set
Xa that fingerprints 61, 62 and 63 are dissimilar to the genuine
green-tea fingerprints. Fingerprint 62 is here clearly detected as
deviating, which was not the case on the r or c colour maps. As this
sample has small peaks and thus is of lower quality, we can con-
clude that the Euclidian distance detects this type of lower quality

sample better. The de evaluation plot (Fig. 3d1) confirms the colour
maps, i.e. fingerprints 61, 62 and 63 are clearly rejected. The de
better distinguishes low quality green-tea samples, caused by low
concentrations, than the correlation measurements do. On the ds
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Fig. 3. (a and b) Colour maps of the Euclidean distances de (a1, b1) and the standardised Euclidean distances ds (a2, b2) of data sets Xt (a) and Xa (b). (c and d) Evaluation
p  ds (c2

a ing an
f our in

c
a
g
r
U
s
p

lots  for the Euclidean distances de (c1, d1) and the standardised Euclidean distance
nd  61 (green), 62 (red) and 63 (magenta) from Xa (d). Horizontal lines: upper warn
rom  the genuine green-tea fingerprints. (For interpretation of the references to col

olour map  (Fig. 3b2) many genuine samples show a high distance
nd thus would indicate low similarities. The ds evaluation plot
ives less obvious and non-consistent results. Just 2.5% of the ds

esults of fingerprint 62 are above the UWL, but none above the
CL, while fingerprint 61 was even not detected at all as deviating

ample. This confirms that ds does not seem to be a valuable SA
arameter to distinguish deviating profiles from a data set.
, c2) of the suspected fingerprints 53 (green), 54 (red) and 55 (magenta) from Xt (c),
d control limits (UWL and UCL) for the (standardised) Euclidean distances, derived

 this figure legend, the reader is referred to the web version of the article.)

The third distance measure evaluated as similarity parameter
is the Mahalanobis distance (dm) (Eq. (6)). The more similar the
fingerprints are, the smaller the Mahalanobis distance is expected

to be. From the colour map  pattern no interpretation can be made
(Fig. 4). The covariance matrices of the data sets are close to singular
which makes the calculation of dm unreliable. The calculation time
of the Mahalanobis distances was  high, e.g. about 70 times higher
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Fig. 4. Colour map  of the Mahalanobis distances dm of data set Xt.  (For interpre-
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Fig. 5. (a and b) Colour maps of the adapted similarity score ss* of data sets Xt
(a)  and Xa (b). (c and d) Evaluation plots for the similarity score of the suspect
fingerprints 53 (green), 54 (red) and 55 (magenta) from Xt (c), and 61 (green), 62
(red) and 63 (magenta) from Xa (d). Horizontal lines: lower warning and control
limits (LWL and LCL) for the adapted similarity scores, derived from the genuine
green-tea fingerprints. (For interpretation of the references to colour in this figure
ation of the references to colour in this figure legend, the reader is referred to the
eb  version of the article.)

ompared to the case where this parameter was excluded from the
A calculation. The Mahalanobis distance is thus not useful as SA
arameter for chromatographic fingerprints.

As a fourth distance measure, the adapted similarity score (ss*),
efined in Eq. (8),  is introduced. Using distances like the Euclidean
istance de,  results in a wide range of values, e.g. the de ranges for
he genuine green-tea fingerprints of data sets Xt,  Xa and Xb are
62–3238, 60–1612 and 135–2863, respectively. Distance values
etween 0 and 1 are obtained using the adapted similarity score
s*. It is a scaled distance, which is subtracted from 1. Consequently

 similar scale as for the correlation parameters is obtained. A good
imilarity between fingerprints will thus result in a high ss*  (close
o 1), a low similarity in a low (close to 0).

In Fig. 5a and b, the ss*  are plotted for the fingerprints of data sets
t and Xa,  respectively. The higher ss* is (dark red), the more similar

he fingerprints and thus the green-tea samples are. The blue colour
epresents a low similarity. In Fig. 5c and d the evaluation plots of
he suspected samples 53, 54 and 55 for data set Xt,  and 61, 62 and
3 for Xa,  respectively, are shown. They are interpreted in a similar
anner as the correlation-based evaluation plots, as described in

ection 4.1.
The ss* colour map  from Xt (Fig. 5a), yields similar results as for

he correlations, i.e. fingerprints 53 and 54 are detected as deviat-
ng and 55 is not. Nevertheless, the similarities and dissimilarities
re visually clearer in the r and c colour maps (Fig. 2a). The ss* eval-
ation plot (Fig. 5c) again provides similar information about the
uspected samples: 53 and 54 are considered dissimilar, whereas
5 is identified as a genuine sample. All ss* values of fingerprint 55
re above the LWL. This matches the conclusions drawn in Section
.1 from the fingerprint patterns in Fig. 1a.

The ss* colour map  from Xa (Fig. 5b) provides some extra infor-
ation compared to the r and c colour maps (Fig. 2b), which was

lso noticed using the Euclidean distance. The three suspected sam-
les 61, 62 and 63 are clearly detected as deviating fingerprints.
ingerprint 62, which is not distinguished as low quality sample
ased on the r and c colour maps, is correctly detected from the ss*
olour maps. Therefore, the ss* colour maps seem better than those
f the correlation parameters to visually distinguish between devi-
ting and genuine samples. However, from the r and c evaluation
lots (Fig. 2d), this sample was also correctly detected. The ss* eval-
ation plot (Fig. 5d) confirms the observations from the colour map,
.e. 61, 62 and 63 are clearly rejected as genuine samples. For this
ata set, the ss* evaluation plot was even clearer than the one based
n the Euclidean distance.

legend, the reader is referred to the web version of the article.)
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In summary, we observed that standardised Euclidean distances
eveal less interpretable information than the Euclidean distances,
nd that the Mahalanobis distances are not interesting for simi-
arity analysis. Based on de or ss* colour maps and evaluation plots,
he same conclusions are drawn. The adapted similarity score com-
ines the advantages of the correlation and the Euclidean distance
atrices. First, distances like de and ss* detected quality differences

ased on concentration differences. The low-quality sample 62 in
ata set Xa was detected on the r or c evaluation plots, whereas on
he r or c colour maps it was not. Secondly, the ss* parameter gives
asily interpretable similarity results between 0 and 1. For the eval-
ation of new data sets, the ss* colour maps and evaluation plots
urns out to be valuable tools to distinguish between deviating and
enuine samples.

.3. Evaluation of fingerprint alignment on the similarity analysis

The influence of aligning the chromatographic fingerprints on
he SA results was evaluated in a preliminary study. Should align-

ent not affect the SA results, then this data pre-treatment step
ould be removed and the approach would then be faster.

To study the alignment effect, we compared the results from
ata sets consisting of the original (not aligned) fingerprints, e.g.
Oa, with their aligned fingerprints, e.g. XWa. In general, a very
igh influence on the SA results is seen. As an example, the colour

ap  of ss* from XOa (Fig. 6a) is plotted against its XWa  (Fig. 6b)

ounterpart. It is obvious that warping increases the similarity
arameter ss* between genuine or similar samples. After correc-
ion of small retention time shifts, consequence of the warping, all

ig. 6. (a and b) Colour maps of the adapted similarity scores ss* of the original data
et  XOa (a) and its warped matrix XWa  (b). (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of the article.)
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genuine samples show a high similarity (Fig. 6b). Although it would
be simpler and faster if no alignment was necessary, it turns out to
be an absolutely essential step in similarity analysis of chromato-
graphic fingerprints.

4.4. Evaluation of the benefit of dissimilar fingerprints

As data sets Xa and Xb are built up by the fingerprints
obtained on two dissimilar chromatographic systems, it allows to
check whether such fingerprints provide complementary informa-
tion about sample similarity. Differences in parameter ranges are
observed between the genuine green-tea fingerprints in Xa and
Xb. For instance, r ranges between 0.877 and 0.999 for Xa and
between 0.845 and 0.999 for Xb.  Differences are also seen for de
or ss*. Despite those range differences, the SA parameters r, c, de,
ds,  dm and ss* resulted in similar colour maps and evaluation plots
for both data sets. The fingerprints of a sample, obtained at both dis-
similar chromatographic systems, provide an equivalent similarity
evaluation in this study.

Furthermore, it is evaluated whether the inclusion of more
chromatographic information in the SA, i.e. concatenating both
fingerprints of Xa and Xb into a data set Xab, provides better iden-
tification or quality control results. If a fingerprint contains more
useful information, one expects the result of the similarity analy-
sis to be more decisive. However, the colour maps and evaluation
plots from Xab were nearly the same as those from the individual
data sets Xa or Xb and thus did not provide extra information. In
addition, the calculation time for Xab was  higher. However, these
observations about the use of combined dissimilar fingerprints
should be confirmed from other case studies.

5. Conclusion

A visual evaluation can discriminate between chromatographic
fingerprint profiles when differences are large and the number of
samples is limited. However, if differences are more subtle, mathe-
matical approaches are necessary. This study compared different SA
parameters as a tool for identification and quality control of herbal
samples.

If no official reference material of the herbal product is available,
the use of data sets with a sufficient number of genuine samples is
important in SA. The use of such libraries, instead of one reference
sample, showed its usefulness. For a proper data interpretation,
alignment of the chromatograms is a required data pre-treatment
step.

The colour maps and evaluation plots showed to be useful tools
to distinguish between deviating and genuine samples. The evalu-
ation plots with the statistical confidence limits are efficient tools
to evaluate suspected samples during quality assurance. They can
be constructed for different parameters.

The correlation r and congruence c coefficients provided very
similar information. The standardised Euclidean distances ds pro-
vided less information than the Euclidean distances de; while
the Mahalanobis distance dm was  not useful for SA. The adapted
similarity score ss* combines the advantages of the correlation coef-
ficients and the Euclidean distances. SA based on correlation is
useful if concentration differences between samples are not impor-
tant, whereas similarity analysis based on distances also detects
concentration differences well. The ss* colour maps and evaluation
plots are therefore valuable tools to distinguish between deviating

and genuine fingerprints.

Finally, the combination of the dissimilar chromatograms of
each sample did not reveal extra information concerning the
(dis)similarity of the considered sample.
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